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SUMMARY

In this paper, a new multi-wing chaotic attractor is constructed. Based on the proposed multi-wing system,
the paper presents a novel method to generate hyperchaotic multi-wing attractors. By introducing a
flux-controlled memristor into the proposed multi-wing system, hyperchaotic multi-wing attractor is
observed in new memristive system. At the same time, the new memristive system has no equilibrium.
The phase portraits and Lyapunov exponents are used to analyze the dynamic behaviors of the
no-equilibrium memristive system. Moreover, we analyze the influence on multi-wing system when adding
the memristor in different position. The electronic circuit is realized by using off-the-shelf components.
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1. INTRODUCTION

After the first hyperchaotic attractor was proposed by Rossler [1], hyperchaotic systems [2–13]
characterized by more than one positive Lyapunov exponent (LE) have been extensively researched.
Hyperchaotic systems with more complex dynamic behaviors can be used in diverse applications
such as cryptosystems [14], neural networks [15], and secure communications [16,17].

The generation of new hyperchaotic attractor has become a hotspot. Lots of hyperchaotic systems
have been introduced [2–6]. The common methods for constructing hyperchaotic system can be
summarized in the following: One is using state-feedback control and parameter trial-and-error
methods to obtain some special types of four- or five-dimensional hyperchaotic systems [2–4]. The
other is coupling or parameter perturbation method [5,6].

In 1971, memristor (memory resistor) firstly predicted by L. Chua is a two-terminal nonlinear
element [18]. It is not until the fabrication of memristor by TiO2 in 2008 [19] that the potential
applications of memristor have been developed in many realms, such as cellular neural network
[20], chaotic system [21], and nonvolatile random access memory [22]. In the realm of nonlinear
system, some memristive systems may be hyperchaotic [23,24]. The hyperchaotic systems with
double-scroll attractor can be obtained by substituting the nonlinear element with a flux-
controlled memristor in canonical Chua’s circuit [23] or Murali–Lakshmanan–Chua circuit [24].
However, the method of replacing the nonlinear element with memristor to generate
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hyperchaotic attractor cannot work well in all of the systems. In [25–28], these memristive
systems can only exhibit normal chaotic behaviors with only one positive LE.

Recently, a flux-controlled memristor is added in 3D chaotic system with double-wing attractor
[9,10]; the memristive system is hyperchaotic. Using the same method, the hyperchaotic four-
wing system in which an extra cross-product item must be added is proposed [11]. However,
the influence of added memristor is not analyzed in the literatures [9–11], and these systems
have only two- or four-wing attractor. There are two different classifications in multi-wing
systems, which the number of wing is more than two. The one classification is the multi-wing
system with smooth nonlinear function [8,11]. The other classification is the multi-wing system
with piecewise nonlinear function [12,13,29,30]. In contrast to the chaotic system with double-
wing, the multi-wing hyperchaotic system with piecewise nonlinear function possesses
the following features: (1) the phase trajectories of multi-wing hyperchaotic attractor can
randomly jump in all wings with ergodic property, so that the dynamical behavior is more
complicated than those of chaotic system with double-wing, and the statistical properties can be
improved [31]; (2) by introducing a nonlinear-function controller, several key parameters of
multi-wing chaotic attractors can be easily adjusted, including the width of each segment,
amplitude, slope, equilibrium, and turning points. As a result, one can easily control the system
equilibrium, the number of wings, the shapes and sizes of the wings, the spatial distribution of
the wings, and even the phase trajectories [31]. (3) Hyperchaotic system has better
unpredictability, more complex dynamic behavior, and larger key space. Based on previous
analysis, the hyperchaotic multi-wing system with piecewise nonlinear function has potential
applications in cryptosystem and secure communication. By adding a memristor, the memristive
four-wing system with smooth nonlinear function has been discussed in [11]; however, the
memristive multi-wing system with piecewise nonlinear function has not been considered. Based
on the advantages of the multi-wing hyperchaotic system with piecewise nonlinear function [31],
it is interesting and necessary to analyze the memristive multi-wing system with piecewise
nonlinear function.

The paper proposes a method to obtain hyperchaotic multi-wing attractor with more complex
dynamics by introducing a flux-controlled memristor into the proposed multi-wing system.
Compared with the complex coordinate transition and absolute value transition [12] and parameter
trial-and-error methods [13], we only need introducing a memristor into the multi-wing system. At
the same time, memristor has nanometer size, lower power, and nonlinear characteristics.
Moreover, the position of memristor that can affect the new memristive multi-wing system is
analyzed. Meanwhile, chaotic attractors without equilibrium, which are considered as hidden
attractors, have only bloomed in recent years [32,33]. The identification of hidden attractors is the
basis to analyze and control nonlinear dynamical systems with hidden attractors; therefore, studying
nonlinear dynamical systems with hidden attractors has academic importance and practical
significance. Recently, the multi-scroll (multi-wing) systems without equilibrium are concerned
[34–36]. However, they belong to normal chaos. An interesting question ‘Can we construct a no-
equilibrium system which can generate hyperchaotic multi-wing chaotic attractors?’ is asked. To
the best of our knowledge, there is no literature reported regarding such systems. Hyperchaotic
system has more complex dynamic behaviors, and the question that we ask is worth investigating.
In this paper, we propose and analyze novel memristive hyperchaotic multi-wing systems with no
equilibrium.

The paper is organized as follows. In Section 2, the new multi-wing system is proposed and
simulated. In Section 3, the memristive hyperchaotic multi-wing systems and their dynamic
behaviors are analyzed. In Section 4, the electronic circuit of no-equilibrium hyperchaotic multi-
wing system is realized. Some conclusions are finally given in Section 5.

2. THE PROPOSED MULTI-WING SYSTEM

A three-dimensional quadratic double-wing chaotic system is given by
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_x ¼ α y� xð Þ
_y ¼ y� xz

_z ¼ �β þ y2

8><
>: (1)

where α = 2 and β = 1 and the numerical simulation results are described in Figure 1.
In order to generate multi-wing attractor in Lorenz-like system, a method based on the extension of

saddle-focus equilibrium points with index 2 was proposed [29,37,38]. In these systems, the number of
wings was equal to that of saddle-focus equilibrium points with index 2.

In the following section, we adopt the same method for the system (1), and the system with
2(N + 1)-wing can be described as follows:

_x ¼ α y� xð Þ
_y ¼ y� xz

_z ¼ f yð Þ � β

8><
>: (2)

f yð Þ ¼ F0 y2 � ∑
N

i¼1
Fi 1þ 0:5sgn y� Eið Þ-0:5sgn yþ Eið Þ½ �

F0 ¼ k
p

Fi ¼ 2Ap
ki

Ei ¼ 0:5 iþ 1ð ÞAp
k

(3)

The nonlinear function f(y) is the key to generate multi-wing attractor. Letting N = 4, A = 2, p = 1,
k = 1, k1 = 0.8, k2 = 0.8, k3 = 0.6, and k4 = 0.45, it can be obtained that F0 = 1, F1 = 5, F2 = 5, F3 = 6.67,
F4 = 8.89, E1 = 2, E2 = 3, E3 = 4, and E4 = 5. The numerical simulation results of multi-wing chaotic
attractors are depicted in Figure 2 when N = 4.

It is easy to see that the system (2) is invariant under the transformation (x, y, z) ↔ (�x, �y, z) with
z-axis symmetry.

When i = 0, 1, 2, …, N, the equilibrium points with index 1 (expressed as (v± i, v± i, 1), where v
±i = ±0.5 (1 + i)Ap/k, and marked with ‘□’ in Figure 3) are not essential. The second type of
equilibrium points (marked with ‘O’ in Figure 3) is main consideration, and they can be described as
(u±i, u±i, 1).

Figure 1. Simulated phase portraits of system (1) under the initial condition [0, 0.1, 0]: (a) x-y plane; (b) x-z
plane; (c) y-z plane. [Colour figure can be viewed at wileyonlinelibrary.com]
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u ± i ¼
±

ffiffiffiffiffiffiffiffiffiffiffi
β=F0

p
i ¼ 0

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β þ∑N

i¼1Fi

F0

s
1 ≤ i ≤ N

8>><
>>: (4)

When N = 4, there are 2(N + 1) = 10 equilibrium points with index 2, which can be derived as

Q±0 ±1;±1; 1ð Þ
Q±1 ±2:4495;±2:4495; 1ð Þ
Q±2 ±3:3166;±3:3166; 1ð Þ
Q±3 ±4:2036;±4:2036; 1ð Þ
Q±4 ±5:1536;±5:1536; 1ð Þ

(5)

By linearizing the system (2), the Jacobian matrix is

J Q± i ¼
�α α 0

�z 1 �x

0 2F0y 0

2
64

3
75
Q± i

i ¼ 0; 1; 2⋯;N (6)

The corresponding eigenvalues of each equilibrium point in (5) are obtained as follows:

Figure 2. Simulated phase portraits of system (2) under the initial condition [0, 0.1, 0]: (a) x-y plane; (b) x-z
plane; (c) y-z plane. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 3. The equilibrium points (u±i, u±i, 1) in system (2) when N = 4. [Colour figure can be viewed at
wileyonlinelibrary.com]
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γ±0 ¼ �1:4780 σ ±0 ± jω±0 ¼ 0:2390± j1:6277

γ±0 ¼ �1:4780 σ ±0 ± jω±0 ¼ 0:2390± j1:6277

γ±0 ¼ �1:4780 σ±0 ± jω±0 ¼ 0:2390± j1:6277

γ±0 ¼ �1:4780 σ ±0 ± jω±0 ¼ 0:2390± j1:6277

γ±0 ¼ �1:4780 σ ±0 ± jω±0 ¼ 0:2390± j1:6277

(7)

The LEs are 0.317662, �0.001242, and �1.316417. Therefore, the system is normal chaos. And the
circuit diagram of system (2) is shown in Figure 4.

3. THE MEMRISTIVE HYPERCHAOTIC MULTI-WING SYSTEM

3.1. The memristor

Memristor can be classified as charge-dependent and flux-dependent memristor. The memristor used in
this paper is a flux-controlled memristor. The relationship between voltage and current of flux-
controlled memristor can be expressed as

im ¼ W φð Þv; _φ ¼ κv (8)

where W(φ) is an incremental memductance function [18]. Various mathematical models and emulator
circuits have been reported [39–42] in order to research the characteristics and application of
memristor. The memductance function frequently used in nonlinear systems [9–11,43–45] is given by

Figure 4. The circuit diagram of system (2) with 2 (N + 1)-wing.
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W φð Þ ¼ dq φð Þ=dφ ¼ aþ 3bφ2 (9)

where a and b are two positive constants.

3.2. The memristive multi-wing systems and their dynamic characteristics

To obtain hyperchaotic multi-wing attractor, a flux-controlled memristor is added in the proposed
multi-wing system. The implementation circuit can be presented in Figure 5.

From (8) and Figure 5, it can be obtained that

Cx _vx ¼ vy=R2 � vx=R1 �W φð Þ �vxð Þ
Cy _vy ¼ vy=R3 � vxvz=R4

Cz _vz ¼ f yð Þ=R5 � 1=R6

Cφ _vφ ¼ κ �vxð Þ

8>>><
>>>:

(10)

where vx, vy, vz, �vx, �vy, and �vz respectively indicate the voltage of x, y, z, �x, �y, and �z.
Let t = τ∙RC, where τ is the dimensionless time. When choosing the parameters expressed as

follows: Cx = Cy = Cz = C, α = R/R1 = R/R2, R3 = R4 = R5 = R6 = R, the dimensionless equations
can be described as follows:

_x ¼ α y� xð Þ þ ρW φð Þx
_y ¼ y� xz

_z ¼ f yð Þ � 1

_φ ¼ �κx

8>>><
>>>:

(11)

Figure 5. The circuit implementation after adding an extra memristor.
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where ρ is a coefficient of the term containing memristor in (11), and we consider ρ > 0 in the
following paper.

Compared with (2), it is easy to see that the memristive system (11) is invariant under the
transformation (x, y, z, φ) ↔ (�x, �y, z, �φ) with z-axis symmetry.

The equilibrium for system (11) is obtained by

α y� xð Þ þ ρW φð Þx ¼ 0 (12)

y� xz ¼ 0 (13)

f yð Þ � 1 ¼ 0 (14)

κx ¼ 0 (15)

From (12) and (15), we obtain that x = y = 0, which is inconsistent with (14). Therefore, there is no
equilibrium in the system (11).

The question ‘what happen if the position of memristor changes’ is fascinating. We will discuss the
question in the following.

The nodes x, y, z, �x, �y, �z, x0, y0, and z0 are marked in Figure 5. Terminal A of memristor can
connect to one of nodes x, y, z, �x, �y, and �z, and terminal B of memristor can connect to one of
nodes x0, y0 and z0. Therefore, there are different situations for the connection of memristor.

Based on the previous analysis, the positions of added memristor are discussed, and their dynamic
behaviors are analyzed in Table I (when the connection way is xx0, xy0, xz0, yx0, yy0, yz0, zx0, zy0, and zz0,
the similar analysis can also be obtained, and here, we do not list the table), where the connection way
-xx0 indicates the Case when terminal A of memristor connects node -x and terminal B connects node
x0, and the connection way -xy0 indicates the Case when terminal A of memristor connects node -x and
terminal B connects node y’ and so on.

There is all no equilibrium in the every memristive system in Table I. It is worth noting that the
chaotic system without equilibrium is categorized as that with hidden attractor. In the following, the
phase portraits and LEs are analyzed when the parameters are taken as α = 2, β = 1, and κ = 0.1.

3.3. The phase portraits and Lyapunov exponents

The phase portraits and LEs are main tools to analyze dynamic behavior. The possible Cases when
adding an extra memristor are analyzed. It is found that there are chaotic attractors in Cases 7–9
only when the parameter ρ is very small (ρ ≈ 0.0001), and the common of these cases is that
terminal A of memristor is connected to node �z. Therefore, Cases 7–9 are not considered.

3.3.1. Lyapunov exponents. The sign function sgn(x ± Ei), which is non-differentiable at zero, is
replaced by the continuous differentiable function tanh(K0(x ± Ei)) in order to calculate the LEs
[7,13]. In general, the bigger the parameter K0, the better the approximate performance, so we
choose K0 = 1000. We take the Dormand–Prince method (RK45) as the ODEs solver and use the
famous Wolf method. The LEs are calculated in Cases 1–3, and the initial condition is [0 0.1 0 0].
The numerical results are depicted in Figure 6 (The last one is not displayed because it is always a
big negative number).

From Figure 6, the hyperchaotic attractors are discovered in Cases 1–2 and Cases 4–5. The LEs and
memristor’s parameters are shown in Table II. Unfortunately, nothing hyperchaotic attractors are
observed in Cases 2 and 3.
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3.3.2. The phase portraits. The question whether the extra memristor affect the multi-wing properties
will be asked. It is easy to observe the multi-wing properties from phase portraits.

Case 1
The phase portraits are shown in Figure 7 when the initial condition is [0 0.1 0 0] and the parameters
are taken as a = 0.65, b = 1/30, ρ = 0.24, α = 2, β = 1, and κ = 0.1.

Table I. Dynamic analysis of new memristive systems in different connection way.

Case Connection way Dimensionless equation Symmetry

Case 1 -xx0

_x ¼ α y� xð Þ þ ρW φð Þx
_y ¼ y� xz

_z ¼ f yð Þ � β

_φ ¼ �κx

8>>><
>>>:

(x, y, z, φ)↔ (�x, �y, z, �φ)
with z-axis symmetry

Case 2 -xy0

_x ¼ α y� xð Þ
_y ¼ y� xzþ ρW φð Þx
_z ¼ f yð Þ � β

_φ ¼ �κx

8>>><
>>>:

(x, y, z, φ)↔ (�x, �y, z, �φ)
with z-axis symmetry

Case 3 -xz0

_x ¼ α y� xð Þ
_y ¼ y� xz

_z ¼ f yð Þ þ ρW φð Þx� β

_φ ¼ �κx

8>>><
>>>:

no

Case 4 -yx0

_x ¼ α y� xð Þ þ ρW φð Þy
_y ¼ y� xz

_z ¼ f yð Þ � β

_φ ¼ �κy

8>>><
>>>:

(x, y, z, φ)↔ (�x, �y, z, �φ)
with z-axis symmetry

Case 5 -yy0

_x ¼ α y� xð Þ
_y ¼ y� xzþ ρW φð Þy
_z ¼ f yð Þ � β

_φ ¼ �κy

8>>><
>>>:

(x, y, z, φ)↔ (�x, �y, z, �φ)
with z-axis symmetry

Case 6 -yz0

_x ¼ α y� xð Þ
_y ¼ y� xz

_z ¼ f yð Þ þ ρW φð Þy� β

_φ ¼ �κy

8>>><
>>>:

no

Case 7 -zx0

_x ¼ α y� xð Þ þ ρW φð Þz
_y ¼ y� xz

_z ¼ f yð Þ � β

_φ ¼ �κz

8>>><
>>>:

no

Case 8 -zy0

_x ¼ α y� xð Þ
_y ¼ y� xzþ ρW φð Þz
_z ¼ f yð Þ � β

_φ ¼ �κz

8>>><
>>>:

no

Case 9 -zz0

_x ¼ α y� xð Þ
_y ¼ y� xz

_z ¼ f yð Þ þ ρW φð Þz� β

_φ ¼ �κz

8>>><
>>>:

(x, y, z, φ)↔ (�x, �y, z, φ)
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The similar multi-wing attractors are also observed in Case 2, Case 4, and Case 5. We will not
enumerate here.

Case 3
The phase portraits are shown in Figure 8 when the initial condition is [0 0.1 0 0] and the parameters
are taken as a = 0.3, b = 1/30, ρ = 0.1, α = 2, β = 1, and κ = 0.1.

Case 6
The phase portraits are shown in Figure 9 when the initial condition is [0 0.1 0 0] and the parameters
are taken as a = 3, b = 1/30, ρ = 0.1, α = 2, β = 1, and κ = 0.1.

From Figures 8 and 9, the symmetry of multi-wing attractor is destroyed. From Table I, the two
Cases have something in common, and terminal B of memristor is connected to node z0. From the
dimensionless equation, the added terms ρw(φ)x and ρw(φ)y in the third equation destroy the
nonlinear function f(y).

Based on the previous analysis, it can be observed that these no-equilibrium memristive systems in
Cases 1–2 and Cases 4–5 have good hyperchaotic multi-wing attractors. From Table I, these Cases are
all with z-axis symmetry. Therefore, we can conclude the steps to construct hyperchaotic multi-wing
attractor by adding memristor. Firstly, we should analyze the symmetry of original multi-wing

Figure 6. First three Lyapunov exponents of memristive multi-wing systems in different cases: (a) Case 1;
(b) Case 2; (c) Case 4; (d) Case 5. [Colour figure can be viewed at wileyonlinelibrary.com]

Table II. The Lyapunov exponents (LEs) and memristor’s parameters.

Case Memristor’s parameter LEs

Case 1 a = 0.65, b = 1/30, ρ = 0.24 0.311267, 0.046489, �0.009402, �1.005634
Case 2 a = 0.5, b = 1/12, ρ = 0.12 0.290539, 0.044846, 0.000096, �1.335481
Case 4 a = 20, b = 2/3, ρ = 0.94 0.807309, 0.088699, �0.0023575, �1.872436
Case 5 a = 1, b = 0.1, ρ = 0.18 0.271676, 0.049507, �0.003803, �0.729386
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Figure 7. The phase portraits in Case 1: (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) x-φ plane. [Colour fig-
ure can be viewed at wileyonlinelibrary.com]

Figure 8. The phase portraits in Case 2: (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) x-φ plane. [Colour fig-
ure can be viewed at wileyonlinelibrary.com]
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chaotic system. Then, we add the memristor to original system, and the symmetry of new memristive
multi-wing system is according to that of original system. At last, we only adjust the parameter ρ to
construct hyperchaotic multi-wing system.

4. CIRCUIT IMPLEMENTATION

In order to further survey the no-equilibrium hyperchaotic multi-wing attractor, we take Case 1 when
the connection way of memristor is �xx0 as an example. The electronic circuit using operational
amplifiers TL082 and multipliers AD633JN is realized. Their supply voltages are E = ±15 V, and
their saturated voltages are Vsat ≈ ±13.5 V. From Figure 7, the values of x, y, z, and φ are in the
dynamic range, so it is not necessary to rescale the state variables.

Let t = τ∙RC, where τ is the dimensionless time. R is a reference resistor, and C is a reference
capacitor. Substituting (9) into (11), and it can be described by

RC
dx
dt

¼ α y� xð Þ þ ρ aþ 3bφ2
� �

x

RC
dy
dt

¼ y� xz

RC
dz
dt

¼ f yð Þ � 1

RC
dφ
dt

¼ �κx

8>>>>>>>>>><
>>>>>>>>>>:

(16)

Similar to [9,10], a simple memristor model with off-the-shelf components is described in Figure 10
(a). It can be obtain that

Figure 9. The phase portraits in Case 3: (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) x-φ plane. [Colour fig-
ure can be viewed at wileyonlinelibrary.com]
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Figure 11. Experimental observations of memristive hyperchaotic multi-wing system. (a) x-y plane; (b) x-z
plane; (c) y-z plane; (d) x-φ plane. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 10. The schematic (a) circuit implementation of system (16) in Case 1; (b) circuit implement of func-
tion �f(y).

NO-EQUILIBRIUM HYPERCHAOTIC MEMRISTIVE MULTI-WING SYSTEM 95

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2018; 46:84–98
DOI: 10.1002/cta

wileyonlinelibrary.com


iB ¼ w φð Þ �vxð Þ ¼ �vx
Ra

þ vφ2 �vxð Þ
Rb

(17)

where iB is the input current of the memristor.
By putting a multiplication factor 0.1/V of multiplier AD633JN and substituting (17) into (10),

Equation (10) can be rewrote as follows:

Cx
vx
dt

¼ vy=R2 � vx=R1 � �vx
Ra

þ vφvφ� 0:1=V
� � �vxð Þ� 0:1=V

Rb

� �

Cy
vy
dt

¼ vy=R3 � vxvz� 0:1V=R4

Cz
vz
dt

¼ f yð Þ=R5 � 1=R6

Cφ
vφ
dt

¼ �vxð Þ=Rφ

8>>>>>>>>>><
>>>>>>>>>>:

(18)

where vx, vy, vz, and vφ are the voltages on capacitors.
Compared (16) with (18), the parameters are taken as follows:
Cx = Cy = Cz = Cφ = C, R1 = R2 = R/a, R4 = 0.1R, R3 = R5 = R6 = R7 = R8 = R9 = R10 = R, Rφ = 10R,
Ra = R/(ρa), Rb = R/(300ρb).
Now, let us take R = 100 kΩ and C = 100 nF. According to the parameters of the original system and

Table I, that is, α = 2, β = 1, κ = 0.1, a = 0.65, b = 1/30, and ρ = 0.24, so R1 = R2 = 50 kΩ, R4 = 10 kΩ,
R3 = R5 = R6 = R7 = R8 = R9 = R10 = 100 kΩ, Ra = 641 KΩ, and Rb = 41.67 kΩ. The schematic of
system (10) is shown in Figure 10.

Figure 11 shows the oscilloscope traces from this no-equilibrium memristive multi-wing circuit in
Figure 10. It can be observed that the results in Figure 11 are in agreement with Figure 7.

5. CONCLUSION

A novel hyperchaotic multi-wing system, which has no equilibrium, has been introduced by adding a
flux-controlled memristor in the proposed multi-wing system. Moreover, we conclude the steps to
construct memristive multi-wing system; and this method of adding extra flux-controlled memristor
can be extended to design and implement other new continuous hyperchaotic multi-wing or grid
multi-wing systems. The theoretical analysis, numerical simulation, and circuit implementation of
new memristive multi-wing systems are realized in order to research the new systems.
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